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ABSTRACT
We describe the use of non-dedicated clusters by a known
group of local applications sharing the computational re-
sources with additional bioinformatics MapReduce applica-
tions. We have studied how to effectively use the resources
shared by both application types during their execution. In
order to keep local application execution times unaffected we
consider the configuration of a group of parameters of the
Hadoop platform. One of the most relevant aspects to con-
sider is the job scheduling policy. Our aim is to allow that
tasks from different jobs that handle the same data blocks
are grouped to be run on the same node where the blocks
are allocated. Experimental results show that our approach
outperforms traditional policies.
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1. INTRODUCTION
Recent advances in different scientific disciplines are gen-
erating vast amounts of data that must be stored and anal-
ysed efficiently. In this sense, it is interesting to consider
the impact of Next Generation Sequencing technologies that
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provide whole genome data sets as the result of each exper-
imentation. Large data repositories are usually built on top
of computer clusters. In this way, we can use the added com-
puting and storage capacity of all the individual computers.
This kind of systems have become the most common source
of computing found in the majority of scientific laborato-
ries. At the same time, we can find computer workstation
networks that are shared by different users as non-dedicated
environments. That is, systems run a well-known group of
local tasks usually with a tight schedule. This is the case of
computer laboratories devoted to teaching activities in uni-
versity schools. Such non-dedicated resources can be used
for running scientific applications in idle times using tools
like Condor [1]. Alternatively, we can use a social contract
to define a local application resource usage threshold that
should not be compromised. We define our goal as to be
able to execute a set of data intensive MapReduce applica-
tions using Hadoop [2] platform in a non-dedicated cluster.
At the same time, we want to keep local applications unaf-
fected in terms of their execution times. To fulfill this re-
quirement we use control groups [3] to make reservations of
needed computational resources. We propose a new Hadoop
job scheduler that selects Hadoop tasks from a pending jobs
queue. The policy implemented by the scheduler will an-
alyze the available resources of the non-dedicated cluster
and the properties of the additional Hadoop tasks to im-
prove resource usage and execution times. In section 2, we
describe the background of the work, namely existing job
scheduling policies applied in MapReduce systems. Then,
in section 3, we describe the applications considered as local
and additional bioinformatics load. In Section 4 we present
our proposed policy Finally, in section 5 we are showing the
experiments done to evaluate the policy presented and, in
section 6, the conclusions obtained.

2. RELATEDWORK
The increasing volume of existing experimental informa-
tion to be stored and processed generates problems related
to the management, maintenance and fast filtering of large



data sets. It is necessary to apply techniques aimed at reduc-
ing the use of disk and network resources, trying to improve
data locality accesses. For the classical FIFO scheduling al-
gorithm, the problem of locality is not well resolved [4]. For
shared clusters, schedulers as Fair-share [5] and Capacity [6]
try to combine locality and fairness among other objectives.
In many situations we find that those become contradictory
goals to achieve.
Zaharia et al [7] proposed the delay scheduling algorithm
to increase data locality in MapReduce applications. The al-
gorithm delays tasks scheduling in K time units when a task
does not find data on the same node that is free. However, its
use is not suitable for long runtime tasks which may cause
performance degradation in jobs that have delayed tasks.
Furthermore, the value of K must be configured to obtain
good results. Setting this value depends on the type of load
and the execution environment. Low values cannot guaran-
tee data locality and too high values can cause starvation
problems.
Seo et al. [8] proposed a job scheduling policy based
on prefetching techniques for clusters with racks. Unfor-
tunately, increasing data locality when assessing racks does
not guarantee data locality when evaluating individual com-
puting nodes.
Our proposal is in line with the work of Zhenhua et al. [9],
which recommends the need to make global decisions related
to the block allocation data files when a set of applications
need to share some input file set. The main difference with
our work is that they try to solve globally the problem of the
allocation using integer linear programming techniques. In
our proposed policy tasks are scheduled individually trying
to place new tasks that share blocks of input data on the
same node. When a node requests a new task, the policy
looks for a task that handles the same data block used by
the task just completed. The search of tasks to be assigned
to a node occurs between different jobs in the queue.
Hadoop is a highly configurable MapReduce [10] frame-
work developed as an Apache project. It is implemented in
Java and is composed of two main subsystems: HDFS dis-
tributed file system and the Hadoop task running system.
Hadoop applies a predefined input data partitioning policy, a
scheduling of the program tasks into the different computer
nodes, a fault tolerance management policy, and a trans-
parent communication pattern between the different tasks
of the application. With this model, programmers without
much experience in distributed environments can effectively
use a potentially large system.
In summary, we need to adapt policies and parameters of
Hadoop when running static workloads on top of middle-
small sized non-dedicated clusters. We will analyse the im-
pact of the framework parameter adjustments on the per-
formance of the applications to look for efficiency without
affecting local applications.
Other existing projects are adapting MapReduce frame-
works to use shared computing resources. Projects like Moon
[11] have carried out a similar work of adjusting a MapRe-
duce framework to an opportunistic environment. Also,
Adapt project [12]] proposes the use of placement strategies
in order to improve the performance of Map-Reduce appli-
cations where computing nodes enter and leave the system
at any time. Purlieus [13] provides a Hadoop cluster made
of virtual machines as a cloud data center.

3. RUNNING HADOOP JOBS IN A NON-
DEDICATED CLUSTER

Our experimentation analyzes the sharing of computa-
tional resources among two different kind of applications.
First of all, we describe the characterization of a group of
local applications. Then, we describe the additional parallel
applications we are going to execute concurrently. Finally,
we introduce a new job scheduling policy to improve the
resource utilization of our non-dedicated cluster. Addition-
ally, we need to ensure that local user applications are not
affected during their execution. To do that, we are reserv-
ing the resources they need with the use of resource pools
named containers.
We propose the use of Linux container implementation.
The control groups, cgroups, allow us to reserve resources
on the cluster nodes. The resources of each node are organ-
ised in a subsystems hierarchy where each cgroup defines a
specific percentage of use of a subsystem. From there, we
can assign applications, users and processes to each cgroup
to define how any combination of cluster resources will be
shared.

3.1 Local user activity
Local user activity is modeled by a parameterized bench-
mark suite. In this way, each program defines a percentage
of the actual resource consumption: CPU, memory, disk,
and network bandwidth. We use these parameters to repre-
sent typical Best-Effort applications that run locally in our
system. We have profiled our teaching laboratories during
some weeks to have a list of realistic values for comparing
the benchmark execution. Table 1 shows a characterization
of local applications we considered for our work. In this ta-
ble we define five different profiles of use of local resources,
being a selection of Network Attached Storage (NAS) serial
and parallel benchmarks.

3.2 Bioinformatics application
Original Mapping and Assembly with Quality (MAQ) al-
gorithm [15] is designed to align short read DNA sequences
to a reference genome. To do that, it builds a hash ta-
ble to store and index the short read input set. MAQ
alignment algorithm is based on the observation that a full
length alignment of an n bp long read with at most k dif-
ferences must contain at least one exact alignment of n

(k+1)

consecutive bases [16]. That is, for a 30 base pairs (bp)
read to be mapped to a reference sequence with only one
mismatch, there must be at least 15 consecutive bases that
match exactly independently from the actual position of the
mismatch.
MAQ builds six different hash tables to index the first 28
bp of the reads to ensure that alignments with up to two
mismatches are hit. These six tables correspond to six non-
contiguous templates like 11110000, 00001111, 11000011,
00111100, 11001100 and 00110011 if reads were 8 charac-
ters long.
After the read hashes are built, the reference is scanned
on forward and reverse strands; each reference sequence
scanned is looked up at the hashes. If a hit is found to
be a read, MAQ calculates a quality score for the match as
the probability that the alignment is wrong. For this, it uses
a quality score (Qs) equation 1.
Where q1 is the sum of quality values of mismatches of



Profile NAS %CPU %MEM DISK read DISK write NET recv NET sent
A EP.A (serial) 99 0.2 26 7 1.32 2.06
B MG.B (serial) 99 42 37 23 3.84 3.42
C IS.C (serial) 20 95 23000 12000 0.77 0.72
D CG.A (parallel) 40 55 54 21 1890 1845
E FT.A (parallel) 63 61 67 17 1025 965

Table 1: Characterization of the local load using NAS applications. Disk metrics are in blocks/sec and
network in Bytes/sec

the best hit, q2 is the corresponding sum for the second
best hit, n2 is the number of hits with the same number of
mismatches as the best hit, k′ is the minimum number of
mismatches in the 28bp seed, and q is the average value of
base quality in the 28bp seed. Other examples of similar
spaced seed indexing algorithms like MAQ are SOAP [17]
and RMAP [18].

Qs = min{
q2 − q1 − 4.343 log n2,

4 + (3− k′)(q − 14)− 4.343 log p1(3− k′, 28)

}
(1)

3.2.1 MapReduce MAQ implementation
Bioinformatics applications that define workflows process-
ing large data sets can benefit from the use of MapReduce
computing platforms [19] as they provide a useful way of
aggregating disk capacity of each machine and then run the
needed processing locally on each node.
MapReduce applications can be classified depending on
the volume of the data processed in the different stages of
the execution. We will have Map input heavy data intensive
applications when we have a large collection of data, then
Map output and Reduce work with a smaller amount of data.
Map and Reduce input heavy applications are those with
large Map input and output to be processed at the Reduce
phase, where output data of smaller size is produced. Lastly,
we can have Reduce input heavy data applications where the
Map outputs are much bigger than the rest of the data sets
of the application.
Mapreduce MAQ (MrMAQ) [14] is a Reduce input heavy
application programmed in Java using Hadoop open source
MapReduce implementation. The basic principles of the ap-
plication are the same as MAQ. That is, to find matches of
a list of short reads with a provided genome reference by
using a seed and extend algorithm.
The design of MrMAQ is based on previous MapReduce
bioinformatics applications like Cloudburst [20], Crossbow
[21], and MrsRF [22]. In our particular implementation,
Map tasks read both reference and read files to generate 28
bp seeds from both. Reducers receive key-value pairs with
matching read and reference sequences, known as hits. They
extend the alignment for all hits found, calculate their align-
ment qualities and return a list of all short reads, their align-
ment positions in the reference and their alignment qualities.
Map phase: process short read files and genome reference
files. Map tasks use their output as the hash tables of the
original MAQ. That is, they create a new key from each
read storing the result of applying each of the six templates.
Then, Maps scan the reference sequence generating a new
key for each reference subsequence. The result of this Map

phase will be a list of key-value seeds coming from both
types of input, as expressed in Figure 1.

Figure 1: Map Phase

Reduce phase: the alignment extension. For every key
that a Reduce task receives, it also receives a set of all reads
and references that have the same seed. For each of these
matches, the Reduce task will extend the alignment to the
rest of the read and calculate the sum of qualities of mis-
matched bases q over the whole length of the read, extending
out form the 28-bp seed without gaps. Figure 2 shows the
process of extending the alignment of the hit found. Then it
outputs the best quality alignments found for every reference
position.

Figure 2: Reduce Phase

4. PROPOSED POLICY
Our job scheduling policy seeks to take advantage of shared
input file among different jobs to improve data locality. It
was developed for data-intensive applications, such as for



example bioinformatics applications like read-mapping ap-
plications. In these applications the input consists of two
data files: read and reference files. Many different jobs can
share the same reference file even if they use different read
files. Our main goal is to allow tasks that share the same
input block can be scheduled sequentially and in the same
computation node even being tasks of different jobs. This
not only ensures a higher data locality but also take advan-
tage of the cache Hadoop Distribuited File System. When
a node requests a new task, the policy looks for a task that
handles the same data block used by the task just completed.
The search of tasks to be assigned to a node occurs between
different jobs in the queue. The policy also ensures the pos-
sibility that a task could also be sent to a node that has no
local data to be processed, if no other tasks are waiting.
The scheduling policy implemented follows a simple mech-
anism shown in in the algorithm in figure 3. When a com-
puting node task management daemon (TaskTracker) has a
free slot to begin a task, sends a heartbeat to master dae-
mon (JobTracker), reporting its status. Then, JobTracker
searches among the tasks that are waiting to be executed
one that handles the same data block already used on the
same node. If it finds this task, it will be send to the node,
keeping the data locality, lines 4-9. Otherwise, it seeks a
task that processes a block saved in the same node that
requested a new task, lines 10-13. If JobTracker does not
find any task, then it will send the first pending task to be
performed, lines 15-18.

Figure 3: Scheduling policy for tasks using the same
input data blocks

5. RESULTS
To evaluate the performance of local and Hadoop work-
load processing, we have used a computer cluster consisting
of 9 nodes interconnected by a 100 Mbit network. Nodes are
dual processor Intel Pentium 3,4 GHz, with 1 GB of memory
and 44 GB of disk for each node. Hadoop version used was
0.20.2 with Oracle Java JDK 1.6.0-16. All nodes where run-
ning Linux version 2.6.31. Our non-dedicated cluster runs

Figure 4: Execution of local and parallel load using
cgroup resource reservation

well-known controlled local load. This load varies over time,
allocating a few hours to each local application. We are
using a list of cgroups to define different resource usage con-
figurations to be used by each node of the system during
the normal day activities. Then, we define a concurrent mix
of local and additional Hadoop load with the objective of
assuring that the local applications are not affected. Figure
4 shows the execution times of the concurrent application
mix when decreasing the amount of resources reserved for
the local load. From there, for the rest of the analysis, we
select those levels that provide close to original execution
times reserving the least amount of local resources.
Multiple instances of Hadoop applications contend for ac-
cess to a common set of input files. As these applications are
launched, all their map and reduce tasks are available in the
Hadoop task queue. Those tasks from any application that
request the same input data blocks can be co-scheduled to be
executed together. In our case, Hadoop jobs are instances of
read-mapping MrMAQ application. We create a workgroup
by considering all instances that share the same genome ref-
erence file. We have developed a new scheduling policy to
seek affinity between those tasks in a workgroup that request
access to the same input blocks. By this, we want to improve
the co-cheduling of tasks that share resources like common
input files or need to access the same resource like CPU. A
workgroup is treated as a new job entity to be executed by
Hadoop.
Our work environment is based on the principle that all
applications that share files already form a group before their
execution. This assumption is not realistic in most cases.
In our cluster, the different instances of the read mapping
application arrive at known times and, therefore, can be
launched in specific times. Scheduling system also needs to
consider a limited job queue size and a job admission module
that evaluates the number and size of workgroups that are
allowed to be in the queue and launched concurrently. In
this way, we can avoid long waiting times for tasks in the
execution queue.
In our case, each job submitted to the cluster had an in-
put size of 1GB, 2GB and 4 GB. Input files were automat-
ically divided by Hadoop into blocks of 64 MB that were



Figure 5: Makespan times of a workgroup execution
- 1GB input reference file

Figure 6: Makespan times of a workgroup execution
- 2GB input reference file

distributed between the nodes running HDFS. To evaluate
the effects of the block distribution in data locality we did
not use block replication. All jobs submitted to the cluster
were composed of 14 reducers. Figures 5, 6 and 7 shows
the execution times of a workgroup with each job sharing
the same genome reference file. We evaluate the execu-
tion time increasing the amount of jobs queued from 1 to
64. Makespan time was used as a metric for evaluating the
scheduling policy. That is, the total time since the first job
was submitted to the cluster until the end of the last ex-
ecution of job queued. Scheduling policies compared were
FIFO, Fair scheduler and the proposed policy. Fair policy
uses a pool of jobs, while the rest use a job queue. Re-
sults show that the policy proposed improves the average
makespan time in 7.8% when compared to FIFO and 8.3%
against Fair Scheduler.

In the second set of experiments we used four different
reference files. That is, we were executing four workgroups

Figure 7: Makespan times of a workgroup execution
- 4GB input reference file

Figure 8: Makespan times of 4 workgroup execution

concurrently to compare the execution times using FIFO,
Capacity, and the proposed policy. For the case of Capacity
scheduler, we defined four queues, one for each workgroup.
Then, jobs submitted to the cluster were assigned to the cor-
responding workgroup queue. Cluster resources like avail-
able slots were distributed evenly among all queues. The
other policies were using a single job queue. Figure 8 shows
makespan times for an increasing amount of jobs belonging
to the four workgroups. The number of jobs belonging to
each workgroup is divided equally among the number of jobs
issued. Results show that the policy proposed improves the
average makespan time in 7.3% when compared to FIFO
and 3.2% when compared to Capacity scheduler. Capac-
ity scheduler creates different jobs queues for each reference
file. The jobs of each queue are executed sequentially allow-
ing Hadoop take advantage of the HDFS cache. Still, our
policy improves outcomes because it is able to schedule se-
quentially tasks of different jobs that share the same input
data.



6. CONCLUSIONS AND FUTUREWORK
We have analysed the adaptation of Hadoop MapReduce
framework to run various instances of bioinformatic appli-
cations in a non-dedicated computer system. We also have
presented a new scheduling policy that defines workgroups
of applications so that they are coscheduled together. The
execution of these Hadoop bioinformatic applications must
be adapted to use existing computing resources so that local
applications are not affected. We propose the use of cgroups
to make adequate resource reservations during the daily use
of our non-dedicated computer system. We have compared
our policy with those available in Hadoop standard installa-
tion to show the benefits of the new policy.
Next steps in the research will consider the dynamic def-
inition of local resources and the impact of local resource
occupation to the Hadoop application workgroups. For that
case, the scheduler will need to dynamically update its choice
of applications to consider tasks that fit better the available
resources.
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